بحث عن المصفوفات ‫‬جاهز doc‎

المصفوفات

في الرياضيات، المصفوفة (بالإنجليزية: Matrix) هي مجموعة مستطيلة من الأعداد أو من الرموز أو من التعبيرات منتظمة بشكل أعمدة وصفوف. يُدعى كل عنصر من هذا المجموعة بعنصرٍ أو مدخلٍ للمصفوفة. فيما يلي، على سبيل المثال، مصفوفة تحتوي على صفين وعلى ثلاثة أعمدة :

مثالا على المدخلات في المصفوفة أعلاه 1, 9, 13, 20, 55 ,4. يدل عادة على أي مدخل في مصفوفة ما باسم المصفوفة بحرف لاتيني صغير وأسفله رقمين صغيرين بحيث يمثل العدد الأول رقم الصف والثاني رقم العمود مثل الشكل المرفق. ويعرف عدد الأسطر في عدد الأعمدة برتبة المصفوفة أو قياس المصفوفة.مثال ذلك المصفوفة المحتوية على 4 أسطر و 3 أعمدة قياسها هو 4*3 ويمكن اجراء عمليتي الجمع والطرح على المصفوفات المتساوية القياس. كما يمكن ضرب المصفوفات بأنسجام معين في القياس. ولهذه العمليات العديد من خصائص الحساب العادي, باستثناء أن ضرب المصفوفات ليس بعملية تبديلية, وبشكل عام يمكن أن نقول أن A.B لا يساوي B.A. تعرف المصفوف المؤلفة من صف واحد أو عمود واحد بمتجه. أما المصفوفة ذات القياس الأكبر تعرف بموتر.

تعتبر المصفوفات من إحدى أهم مفاتيح الجبر الخطي. فيمكن أن تستخدم المصفوفات في حل النقل الخطي. يتوافق ضرب المصفوفات مع النقل الخطي الدالة المركبة. كما يمكن للمصفوفات تتبع المعاملات في نظام المعادلات الخطية

يمكن تعريف المصفوفة عامة على أنها دالة رياضية خطية تحول مجموعة بداية أي انطلاق (مجال) إلى مجموعة وصول أو نهاية (مدى). مجموعة الانطلاق والوصول يمكن أن تكون متكونة من أعداد صحيحة أو عقدية أو أشعة من الأعداد كما يمكن أن تكون هاتان المجموعتان متكونة بدورها من دالات رياضية أو أشعة دالات رياضية. ويمكن أن نرمز للمصفوفة بمعقفين يكتب بينهما عناصر المصفوفة كما هو مبين أسفله:

تعريف

المصفوفة هي تنظيم مستطيل الشكل لمجموعة من الاعداد على هيئة صفوف وأعمدة محصورة بين قوسين.

على سبيل المثال:

يمكن أن تضع المصفوفة بين قوسين مربعين أو بين قوسين هلاليين

تدعى الخطوط الأفقية في المصفوفة بالأسطر بينما تدعى الخطوط العمودية باسم عمود. أما الأعداد فتدعى مدخلات المصفوفة أو عناصر المصفوفة. ترمز إلى مصفوفة بحرف لاتيني كبير وتحته عددين طبيعيين على شكل جداء هما m و n حيث m هو عدد الصفوف و n عدد الأعمدة. وبالتالي تعرف المصفوفة بعدد الصفوف والأعمدة (m × n مصفوفة), وتعرف m و n بأبعاد المصفوفة. فأبعاد المصفوفة أعلاه هي 3*4 أي 4 أسطر و 3 أعمدة.

أما المصفوفة ذات العمود الواحد تحدد بالشكل (m × 1 مصفوفة) وتعرف باسم متجه عمودي. بينما المصفوفة المؤلفة من صف وحيد و n عمود تحدد بالشكل (a 1 × n مصفوفة) وتعرف باسم متجه صفي .

المصفوفة هي جدول من العناصر، قد تكون أعدادا حقيقية أو أعدادا مركبة وقد تكون دوالا وهي صورة رياضية لوضع الأعداد في جدول.

حيز المصفوفة

هو عدد الصفوف والأعمدة المكونة لهذه المصفوفة التي تحتوى على M من الصفوف وN من الأعمدة والحيز m*n وتكتب (A (m*n.

الجمع

لكى يمكن جمع مصفوفتين فلابد أن يكونا من نفس القياس. ويعرف حاصل جمع مصفوفتين بأنه المصفوفة الناتجة عن جمع العناصر المتناظرة في المصفوفتين.

الضرب

ضرب مصفوفة وحيدة العنصر مع مصفوفة متعددة العناصر

يُضرب العنصر الوحيد مع كل عنصر من عناصر المصفوفة، وتكون النتيجة مصفوفة جديدة تحوي العدد نفسه من العناصر. 

ضرب مصفوفة في مصفوفة

يجب في البداية أن نعلم أن ضرب المصفوفات غير تبديلي.

من أجل إيجاد ناتج ضرب مصفوفتين (وهو مصفوفة)، يجب أن يتحقق الشرط التالي:

عدد الأعمدة في المصفوفة الأولى = عدد الأسطر في مصفوفة الثانية.

بفرض A مصفوفة من الشكل a x b، وB مصفوفة من الشكل c x d، فمن أجل إيجاد  ، يجب أن يكون b=c.

سنبدأ في البداية بضرب مصفوفة وحيدة السطر مع مصفوفة وحيدة العمود، فبفرض A وB مصفوفتان، حيث:

ونلاحظ أن المصفوفة الناتجة هي مصفوفة وحيدة العنصر، وبالتالي، فإن ضرب مصفوفة وحيدة السطر مع مصفوفة وحيدة العمود ينتج مصفوفة وحيدة العنصر.

أما عند ضرب مصفوفتين متعددتي العناصر (وبفرض تحقق شروط الضرب)، فعندئذ، نقوم بتقسيم المصفوفة الأولى إلى سطور، والثانية إلى أعمدة، ونقوم بضرب الصف الأول بالعمود الأول (والنتيجة هي العنصر a_11 من النتيجة)، ثم نقوم بضرب الصف الأول مرة أخرى بالعمود الثاني (والنتيجة هي العنصر a_12 من النتيجة، وهكذا.

 

منقول مصفوفة

منقول مصفوفة ما هو المصفوفة الناتجة عن المصفوفة Amxn بعد أن يتم تبديل الأعمدة بالأسطر وبالتالي تصبح Anxm ويرمز لها بالرمز AT. يلاحظ أن العنصر الذي يقع في الصف i والعمود j في المصفوفة A، سيقع في الصف j والعمود i في منقول المصفوفة. .

على سبيل المثال، منقول المصفوفة A =  هو المصفوفة

من خواص منقول المصفوفة:

منقول مجموع مصفوفتين هو مجموع منقول هاتين المصفوفتين أي أن :

A+B)T = AT + BT)

منقول حاصل ضرب مصفوفتين يساوي حاصل ضرب المصفوفتين بشكل معاكس لمنقولهما أي:

A.B)T = BT × AT)

معكوس المصفوفة

معكوس المصفوفة يقصد به المعكوس الضربى للمصفوفة بحيث يكون حاصل ضرب المصفوفة في معكوسها يساوى مصفوفة الوحدة.

تدعى المصفوفة A مصفوفة قابلة للعكس إذا وجدت مصفوفة B تحقق العلاقة التالية:

AB = In

و تدعى المصفوفة B بمقلوب المصفوفة A ويرمز لها بالرمز A1. يكون للمصفوفة المربعة من الدرجة n إذا كانت مصفوفة غير شاذة ويكون معكوسها وحيد. ويحسب معكوس المصفوفة من العلاقة :

حيث |A| محدد المصفوفة A وCij المصفوفة المرافقة:

و يكون بالتالي معكوس المصفوفة المربع ذات الدرجة الثاني :

تمتاز معكوس المصفوفة بالخصائص التالية:

معكوكس معكوس مصفوفة هو المصفوفة الأصلية نفسها أي:

منقول معكوس مصفوفة يساوي إلى معكوس منقول المصفوفة أي:

معكوس جداء مصفوفتين يساوي إلى حاصل ضرب معكوس المصفوفة الثانية في معكوس المصفوفة الأولى أي:

مثال على تحويل من مجموعة انطلاق إلى مجموعة وصول

لنعتبر مثلا الشعاع التالي:

و المصفوفة التالية: 

عملية تحويل الشعاع تتم على نحو النحو التالي:

وهكذا نكون قد حولنا شعاعا V ينتمي إلى  إلى شعاع X ينتمي إلى ال  . أما عامة إذا كانت المصفوفة تحتوي على عدد m من الأسطر و n من الأعمدة فإنها تحول مجموعة الانطلاق المكونة من أشعة تنتمي إلى ال  إلى مجموعة الوصول المتكونة من أشعة تنتمي إلى ال  .

كما يمكن اعتبار المصفوفات نوعا خاصا من التنسورات ألا وهي التنسورات من الدرجة الثانية.

.
.
.

__________________________________

اضغط الرابط أدناه لتحميل البحث كامل ومنسق جاهز للطباعة 

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *